Historically, the idea of a fabric made from spider silk that is strong enough to withstand extreme forces such as being hit by bullets, but soft and comfortable enough to be worn as normal, everyday clothes has been a dream for centuries, but few have been able to produce it until very recently.
In the early 1700’s, the first recorded use of spider silk was by Francois-Xavier Bon de Saint Hilaire, a Frenchman who was successfully able to harvest enough silk directly from spiders to produce gloves, socks, and even a full suit for his king, Louis XIV. It was said that he would go out and gather hundreds of spiders at a time and store them in crates only to return and find only a few left due to the fact that spiders have a tendency to eat each other when placed in close proximity.
A little over one hundred years later, a Spaniard working in Italy named Raimondo de Termeyer was able to produce a pair of stockings and a shawl for Emperor Napoleon and his then wife Empress Josephine. He was able to do this by using a machine that he invented that would immobilize the spider and remove the silk without harming the spider.
In the late 1800’s, a French Jesuit missionary named Jacob Paul Camboué who lived in Madagascar began experimenting with extracting silk from spiders. He later teamed up with another Frenchman who went by Mr. Nogué and, inspired by Termeyer’s design, created a hand powered machine capable of extracting silk from up to 24 spiders simultaneously and combining it into one continuous strand. Using this machine, the team was able to create a set of bed hangings which was on display at the 1900 Exposition Universelle in Paris.
More recently in 2004, using the design documented by Camboué and Nogué, Simon Peers and Nicholas Godley attempted to recreate the machine and create their own spider silk fabric. Every morning they collected new spiders, “milked” them for their silk, and returned them to the wild when they were done with them. The entire process was extremely slow and the amount of silk that could be acquired from each spider was very minimal because it takes around 23,000 spiders to produce only one gram of silk. So, over the course of five years, using over one million spiders, and spending half a million dollars, they had finally produced enough silk to weave a single golden cape decorated with intricately embroidered and appliquéd motifs that depict the spiders that were used to generate the material. This cape is said to be incredibly strong, yet as soft as cashmere.
Milking spiders for their silk can also be used for purposes other than textiles. An old wound remedy that was used as far back as the Roman Empire included gathering spider silk and applying directly to a wound to help the healing process. Borrowing from this, the Department of Plastic, Hand, and Reconstructive Surgery in the Medical School Hannover in Germany has developed a way to utilize a woven mesh of the dragline silk extracted directly from Nephila spp spiders to create an “artificial skin” that may be applied to the skin to repair it without any immune system response. They did this by placing normal skin cells onto a spider silk mesh and, in the right conditions, were able to create the outer and inner layer of skins in only a week’s time. This could be used as a natural alternative to plastic surgery to regrow skin on burn and trauma patients.
Unfortunately, due to the large number of spiders that is required to produce just a small amount of silk and spiders’ cannibalistic nature, it is impractical to harvest silk directly from them. Knowing this, there have been and are currently many companies and organizations trying to get around this by racing to develop and commercialize fibers that have properties similar to that of natural spider silk.
In 1993, a company called Nexia Biotechnologies Inc. was founded in Montreal, Canada by Dr. Jeffrey Turner and Paul Ballard. Originally working and failing to produce lactose-free milk, it found new direction when Dr. Jeff Turner suggested that they work to incorporate spider DNA into the milk to produce spider silk proteins. By licensing research done by one of the world’s top researchers on spider silk, Dr. Randy Lewis, they isolated and cloned the proteins for spider silk and were finally able to produce 10 grams of spider silk proteins in goat milk in 2002. At full capacity, they were producing small quantities of the proteins with each batch of milk harvested and spinning some of them into a fiber that they named “Biosteel™”. Unfortunately, with the extremely limited amount of proteins that could be created in addition to the high cost to produce these proteins, they found that the business was unsustainable. They ended up selling most of their assets in 2005 and finally went bankrupt in 2009.
Dr. Randy Lewis was not giving up and was determined to take this idea further. He took the idea of the “spider goats” and ran with it in parallel with Nexia Biotechnologies, creating his own breeds while working out of the University of Wyoming. He was also in talks with Dr. Don Jarvis, a noted molecular biology professor that specialized in silkworms at the University of Wyoming, to somehow incorporate the spider DNA into the silkworms in a similar manner as the goats.
Meanwhile, Kim Thompson, a business lawyer with a strong interest in the process of making artificial spider silk, had contacted the University of Notre Dame’s Dr. Malcolm Fraser. Dr. Fraser was one of the initial scientists that had worked on producing the first transgenic silkworms as well as one of the researchers who was able to develop a method to replace the DNA in a specific part of an insect with another unique sequence. He called this method “piggyBac”. Thompson was highly interested in using this method to replace the DNA in the silkworm’s spinnerets with spider DNA. Together, Thompson and Fraser contacted Lewis and Jarvis and decided to work together to create this artificial spider silk.
In 2006, Thompson founded Kraig Biocraft Laboratories Inc. and began working to create transgenic silkworms that have been injected with spider DNA. In 2010, they finally achieved their goal and created a silkworm capable of spinning a much stronger silk, which the company dubbed “Monster Silk®”. They published their methods and findings in a PNAS paper and begun ramping up the production of silkworms to commercial quantities. Since then they have also licensed another method for more precise gene insertion called “Zinc finger” from Sigma-Aldrich. Using this method, they were able to produce an even stronger fiber which they dubbed “Big Red”. Recently, they have been working with Warwick Mills, a technical textile company based in New Hampshire, to test and develop their fibers into practical applications. They are also in talks with the Vietnamese government to build a commercial factory pending Vietnamese legislation. They have stated that they hope to be at commercial production levels of Monster Silk® as early as this year. custom socks with logo